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with Energy Storage
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Abstract—Massive integration of renewable energy resources
calls for new operating and planning paradigms, which address
reduced controllability and increased uncertainty on the gener-
ation side. On the other hand, emerging energy storage tech-
nologies can provide additional flexibility. Therefore, generation
and storage expansion models need to be coordinated to ensure
sufficiency of system-wide response capabilities within different
regulation intervals.

This paper proposes a coordinated generation and storage
expansion formulation considering primary frequency response
constraints. This is a stochastic mixed-integer linear program
solved using an off-the-shelf solver. The proposed formulation
is compared to the case when primary frequency response is
neglected. The case study performed for an 8-zone ISO New
England test system quantifies the value of energy storage
simultaneously providing primary frequency response and spatio-
temporal arbitrage.

Index Terms—Energy storage, generation expansion, mixed-
integer linear programming, primary frequency response, unit
commitment.

NOTATION

Indices

d Index of characteristic days.
g Index of generating units (existing and candidate).
j Index of candidate storage units.
k Index of contingencies.
` Index of transmission lines.
n Index of buses.
t Index of time periods.
ω Index of scenarios.

Sets

D Set of characteristic days.
G Set of generating units (existing and candidates).
Gn Set of generating units (existing and candidates)

connected to bus n.
GC,C Set of candidate conventional generating units.
GC,I Set of candidate renewable generating units.
GE,C Set of existing conventional generating units.
GE,I Set of existing renewable generating units.
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JC Set of candidate storage units.
JC
n Set of candidate storage units connected to bus n.
K Set of contingencies.
L Set of transmission lines.
LO
n Set of transmission lines originating at bus n.

LF
n Set of transmission lines ending at bus n.

N Set of buses.
T Set of time periods.
Td Set of time periods on characteristic day d.
T 0
d Initial time period of characteristic day d.
TL
d Last time period of characteristic day d.

Ω Set of scenarios.

Variables

cDeg
jdω Degradation cost of storage j in day d and scenario

ω ($).
ggtω Power generated by generating unit g during period

t and under scenario ω (MW).
gIN
g Installed capacity of candidate conventional unit g

(MW).
gPC
gtωk Power generated by generating unit g during period

t and under scenario ω in post-contingency state k
(MW).

gS
gtω Power spilled by renewable unit g during period t

and under scenario ω (MW).
pL
`tω Power flow through line ` during period t and under

scenario ω (MW).
pL,PC
`tωk Power flow through line ` during period t and under

scenario ω in post-contingency state k (MW).
pUD
ntω Unserved demand at bus n during period t and under

scenario ω (MW).
pUD,PC
ntωk Unserved demand at bus n during period t and under

scenario ω in post-contingency state k (MW).
sjtω Energy stored in storage unit j at the end of period

t and under scenario ω (MWh).
sPC
jtωk Energy stored in storage unit j at the end of period

t and under scenario ω in post-contingency state k
(MWh).

sC
jtω Power charged into storage unit j during period t

and under scenario ω (MW).
sD
jtω Power discharged from storage unit j during period

t and under scenario ω (MW).
sD,PC
jtωk Power discharged from storage unit j during period

t and under scenario ω in post-contingency state k
(MW).

sE,IN
j Installed energy capacity of candidate storage unit

j (MWh).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TPWRS.2017.2735807

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



0885-8950 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2017.2735807, IEEE
Transactions on Power Systems

2

sP,IN
j Installed power capacity of candidate storage unit j

(MW).
xG,I
gtωk Auxiliary variable used to formulate the product of

variables zG
gtωk and gIN

g (MW).
zG
gtωk Binary variable being equal to 1 if the production of

unit g is equal to its capacity during period t under
scenario ω and in post-contingency state k, and 0
otherwise.

θntω Voltage angle at bus n during period t and under
scenario ω (rad).

θPC
ntωk Voltage angle at bus n during period t and under

scenario ω in post-contingency state k (rad).

Parameters

a Capital recovery factor.
CG

g Generation cost of conventional unit g ($/MW).
CG,IN

g Investment cost of candidate generating unit g
($/MW).

CSE,IN
j Energy investment cost of candidate storage unit j

($/MWh).
CSP,IN

j Power investment cost of candidate storage unit j
($/MW).

CUD Cost of unserved demand ($/MWh).
CUD,PC Cost of unserved demand after a contingency

($/MWh).
Dntω Power demand at bus n during period t and under

scenario ω (MW).
DG

g Speed-governor droop of generating unit g
(MW/Hz).

F (`) Destination or receiving bus of line `.
GIN

g Maximum capacity to be installed of candidate
generating unit g (MW).

Gmax
g Maximum capacity of generating unit g (MW).

Gup
g /Gdw

g Ramp up/down limit of conventional unit g
(MW/h).

Nt Duration of period t (h).
NT Number of periods.
NCyc

j Maximum number of complete charge/discharge cy-
cles of storage j.

M Large enough parameter.
MG Large enough parameter.
MS Large enough parameter.
O(`) Origin or sending bus of line `.
PL,max
` Capacity of line ` (MW).
r Interest rate.
SIE,max Limit on overall installed storage capacity (MWh).
U I
gtω Available capacity of renewable (non-dispatchable)

unit g during period t and under scenario ω (pu).
UPC
gk Binary parameter that is equal to 0 if outage of unit

g is a contingency in post-contingency state k, and
1 otherwise.

V PC
jk Binary parameter that is equal to 0 if outage of

storage unit j is a contingency in post-contingency
state k, and 1 otherwise.

Wd Weight of characteristic day d.
x Unit lifetime (years).
X` Reactance of line ` (pu).

γDegr Parameter used to limit the degradation cost of
storages.

γEP Energy/power ratio of selected storage technology.
γmin
j Minimum amount of energy that must remain in

storage unit j to avoid premature aging (pu).
γ0
j Energy stored in storage unit j at the beginning of

the planning horizon (pu).
πω Probability of scenario ω.
τk Probability of contingency k.

I. INTRODUCTION

Large-scale integration of renewable generation, such as
photovoltaic and wind power resources, introduces additional
uncertainty and variability on power system operation [1],
thus imposing more stringent flexibility requirements [2]–
[4]. These resources with limited dispatchability displace
conventional fossil-fired units, thus reducing the available
means to continuously maintain the generation-load balance.
Even though renewable generation can be used for providing
inertial and primary frequency response (PFR) [5]–[7], as
well as active power reserve [8]–[10], the total amount of
flexibility that they can provide does not fully make up for
the displaced conventional units. Therefore, system operators
seek to ensure sufficient flexible capacity to reliably operate
large fleets of renewable generation via investments in ultra-
flexible conventional units, e.g., gas-fired [11]–[14], and non-
conventional technologies, e.g., energy storage [16], [17], [19],
[20]. However, [11]–[14], [16], [17], [19], [20] focus on
mitigating the impacts of the renewable integration within the
secondary and tertiary regulation intervals, without ensuring
sufficient PFR to withstand a major outage.

Recent measurement-driven studies have indicated that the
available flexibility within the primary regulation interval,
including PFR, has considerably reduced. For example, the
system-wide PFR has reduced in the US Eastern Interconnec-
tion from 37.5 MW/mHz in 1994 to 30.7 MW/mHz in 2004
[21]. Furthermore, integration of renewable generation has
been identified as the major cause of PFR scarcity observed
during several severe contingencies registered in the WECC
system [22]. Several enhancements to unit commitment and
optimal power flow frameworks have been proposed to ensure
PFR adequacy, [23]–[25]. These studies aim to schedule and
dispatch the existing generation resources in a way that ensures
sufficient PFR of the system at all times. On the other
hand, these studies do not account for the ability of storage
technologies to provide PFR and do not guarantee long-
term PFR adequacy necessary for planning studies. Several
demonstration projects have validated the technical feasibility
of energy storage as a PFR provider [26], [27]. Consequently,
this paper develops a framework to assist system operators in
co-planning generation and storage expansion to ensure PFR
adequacy under high penetrations of renewable generation
resources.

A. Literature Review
Energy storage is technically feasible for various power

system applications [28], [29], including spatio-temporal ar-
bitrage and congestion relief [16], [17], [19], [20], active
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power ancillary services [30], [31], inertial and PFR [31]–
[34], and post-contingency corrective actions [35]. The value
of services provided by energy storage depends on their
location and size, which should be jointly optimized to harvest
maximum benefits [16]. References [16], [17], [19], [20]
describe optimization models for joint siting and sizing of
distributed energy storage providing spatio-temporal arbitrage.
However, these models do not explicitly account for credible
contingencies and security constraints, thus neglecting the
value of storage for contingency mitigation. References [33]
and [34] focus on optimal energy storage sizing for providing
PFR, but do not optimize its network placement, which may
cause overloads when PFR is deployed.

Literature regarding co-planning of generation and storage
expansion is thin. Reference [36] proposes an approach based
on dynamic programming and gradient search to co-optimize
a future generation mix and energy storage in transmission-
unconstrained power systems without renewable generation. A
co-optimization of generation and storage expansion decisions
for renewable-dominated microgrids is proposed in [37]. The
common caveat of [36] and [37] is that they disregard the
ability of energy storage to provide PFR and do not explicitly
account for post-contingency states. To the best of the authors’
knowledge, co-planning of generation and storage siting and
sizing, while explicitly accounting for PFR needs and post-
contingency states, has not yet been investigated.

B. Contributions

This paper makes the following contributions:
1) It presents a mathematical formulation for coordinated

generation and storage expansion, while endogenously
modeling PFR constraints in the pre-contingency state
and its deployment in post-contingency states for every
contingency of generating and storage units.

2) The proposed formulation optimizes both siting and
sizing decisions on storage that can be scheduled to
simultaneously provide spatio-temporal arbitrage and
PFR services, thus increasing its value to the system
with high penetration levels of renewable generation.

3) Comparison of the proposed formulation to the tradi-
tional expansion model that accounts only for capacity
adequacy. This comparison is performed on an ISO New
England test system to emphasize the importance of
considering the PFR constraints in expansion studies.

In this paper, we consider a generic electrochemical energy
storage, which typically has high charging and discharging ef-
ficiencies, flexible response characteristics, and flexible power-
to-energy ratio that makes it suitable for various grid support
applications [28], [29]. Furthermore, this type of energy stor-
age units does not have geographical or climate restrictions on
placement decisions.

II. MODEL

A. Assumptions

This paper makes the following assumptions:
1) The demand is inelastic. Thus, maximizing the social

welfare is equivalent to minimizing the operating costs.

2) Generation offer curves are linear with one block, which
is common in planning studies, e.g. [17], [18].

3) Network constraints are based on a dc approximation.
4) The expansion decisions are optimized for a target year

modeled by a set of characteristic days. New generating
and storage units can be placed at every bus of the
system.

5) PFR of conventional generating and storage units is
automatic and uses local frequency measurements.

6) Contingencies are only associated with generating and
storage unit failures. Line failures do not cause instant
frequency deviations and, thus, do not normally require
PFR. All contingencies are cleared within the one time
period, i.e. it is assumed that the system is returned to
the day-ahead schedule following the post-contingency
state.

7) The operating cost of storage is assumed to be negligible
and storage capacity decay is uniformly distributed dur-
ing its lifetime. This is a common assumption in most
of the storage investment studies, such as [19]. Note
that Section III-C quantifies the effect of the storage
degradation characteristic on capacity expansion.

B. Mathematical Formulation

Objective function (1) minimizes the annualized investment
costs of storage and generating units, the expected operating
costs of conventional generating units and the expected load
shed costs in pre- and post-contingency states:

a
[ ∑
j∈JC

(
CSE,IN

j sE,IN
j + CSP,IN

j sP,IN
j

)
+

∑
g∈{GC,C∪GC,I}

CG,IN
g gIN

g

]
+
∑
ω∈Ω

πω
∑
d∈D

Wd

∑
t∈Td

[∑
g∈G

CG
g ggtω+(1)

∑
n∈N

(
CUDpUD

ntω+
∑
k∈K

τkC
UD,PCpUD,PC

ntωk

)]
,

As in [13] and [14], the annualized investment costs are cal-
culated based on the capital recovery factor as a = r(1+r)x

(1+r)x−1
with interest rate r and lifetime x [38]. This factor allows
conversion of the present total investment cost into a stream
of equal annual payments over the investment lifetime at a
specified interest rate. The objective function is constrained as
follows:
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1) Pre-contingency state constraints:
0 ≤ ggtω ≤ Gmax

g , ∀g ∈ GE,C, d ∈ D, t ∈ Td, ω ∈ Ω(2)

0 ≤ ggtω ≤ gIN
g , ∀g ∈ GC,C, d ∈ D, t ∈ Td, ω ∈ Ω (3)

ggtω − ggt−1,ω ≤ Gup
g ,

∀g ∈ {GE,C∪GC,C}, d ∈ D, {t, t− 1} ∈ Td, ω ∈ Ω(4)

ggt−1,ω − ggtω ≤ Gdw
g ,

∀g ∈ {GE,C ∪GC,C}, d ∈ D, {t, t− 1} ∈ Td, ω ∈ Ω(5)

ggtω + gS
gtω = U I

gtωG
max
g ,

∀g ∈ GE,I, d ∈ D, t ∈ Td, ω ∈ Ω (6)

ggtω + gS
gtω = U I

gtωg
IN
g ,

∀g ∈ GC,I, d ∈ D, t ∈ Td, ω ∈ Ω (7)

0 ≤ gIN
g ≤ GIN

g , ∀g ∈ {GC,C ∪GC,I} (8)

sjtω = sjt−1,ω +
(
ηS
j s

C
jtω −

1

ηS
j

sD
jtω

)
,

∀j ∈ JC, d ∈ D, t ∈ Td, ω ∈ Ω (9)

γmin
j sE,IN

j ≤ sjtω ≤ sE,IN
j ,

∀j ∈ JC, d ∈ D, t ∈ Td, ω ∈ Ω (10)

0 ≤ sC
jtω ≤ s

P,IN
j , ∀j ∈ JC, d ∈ D, t ∈ Td, ω ∈ Ω (11)

0 ≤ sD
jtω ≤ s

P,IN
j , ∀j ∈ JC, d ∈ D, t ∈ Td, ω ∈ Ω (12)

sjtω = γ0
j s

E,IN
j , ∀j ∈ JC, d ∈ D, t ∈ T 0

d , ω ∈ Ω (13)

sjtω ≥ γ0
j s

E,IN
j , ∀j ∈ JC, d ∈ D, t ∈ TL

d , ω ∈ Ω (14)

0 ≤ sE,IN
j ≤ SIE,max, ∀j ∈ JC (15)

pL
`tω =

1

X`

(
θO(`)tω − θF (`)tω

)
,

∀` ∈ L, d ∈ D, t ∈ Td, ω ∈ Ω (16)

−PL,max
` ≤ pL

`tω ≤ P
L,max
` ,

∀` ∈ L, d ∈ D, t ∈ Td, ω ∈ Ω (17)∑
g∈Gn

ggtω +
∑
j∈JC

n

(
sD
jtω − sC

jtω

)
−
∑
`∈LO

n

pL
`tω +

∑
`∈LF

n

pL
`tω +

+pUD
ntω = Dntω, ∀n ∈ N, d ∈ D, t ∈ Td, ω ∈ Ω (18)

Constraints (2) and (3) enforce power output limits of the
existing and the newly installed conventional generating units.
Ramp rate limits on these generating units are enforced in
(4) and (5). Power outputs of the existing and the newly
installed renewable generating units are limited in (6) and
(7). These outputs are subject to parameter U I

gtω ∈ {0, 1},
which determines the available capacity of renewable unit g
during period t and under scenario ω. Constraint (8) limits
the maximum capacity of the conventional and renewable
units that can be installed. The state of charge of storage is
computed in (9) and constrained in (10). Constraints (11) and
(12) limit the charging and discharging power. The storage
state of charge at the beginning and at the end of each day is
related in (13) and (14), respectively. The maximum energy
capacity of storage to be installed is limited in (15). Constraint
(16) computes line power flows, which are bounded in (17).
The power balance is enforced for every bus in (18) and
includes injections of storage candidates placed at bus n. Note
that set JC

n relates storage candidate j and its network location

at bus n. Since (18) is enforced ∀n ∈ N , storage can be placed
at any bus where it is economically justified.

2) Post-contingency state constraints:
gPC
gtωk ≥ UPC

gk z
G
gtωkG

max
g ,

∀g ∈ GE,C, d ∈ D, t ∈ Td, ω ∈ Ω, k ∈ K (19)

gPC
gtωk≥UPC

gk z
G
gtωkg

IN
g ,

∀g ∈ GC,C,d ∈ D, t ∈ Td, ω ∈ Ω, k ∈ K (20)

gPC
gtωk ≤ UPC

gk

(
ggtω −DG

g ∆ftωk

)
,

∀g ∈ {GE,C ∪GC,C},d ∈ D, t ∈ Td,ω ∈ Ω,k ∈ K(21)

gPC
gtωk ≥ UPC

gk

(
ggtω −DG

g ∆ftωk

)
− UPC

gk M
GzG

gtωk,

∀g ∈ {GE,C ∪GC,C},d ∈ D, t ∈ Td,ω ∈ Ω,k ∈ K(22)

0 ≤ gPC
gtωk ≤ UPC

gk G
max
g ,

∀g ∈ GE,C, d ∈ D, t ∈ Td, ω ∈ Ω, k ∈ K (23)

0 ≤ gPC
gtωk ≤ UPC

gk g
IN
g ,

∀g ∈ GC,C, d ∈ D, t ∈ Td, ω ∈ Ω, k ∈ K (24)

gPC
gtωk = UPC

gk ggtω,

∀g ∈ {GC,I ∪GE,I}, d ∈ D, t ∈ Td, ω ∈ Ω, k ∈ K (25)

sD,PC
jtωk ≤

(
sjt−1,ω − γmin

j sIN
j

)
ηS
j ,

∀j ∈ JC, d ∈ D, t ∈ Td, ω ∈ Ω, k ∈ K (26)

sD,PC
jtωk ≤ V

PC
jk sP,IN

j ,

∀j ∈ JC, d ∈ D, t ∈ Td, ω ∈ Ω, k ∈ K (27)

sC,PC
jtωk ≤ V

PC
jk sP,IN

j ,

∀j ∈ JC, d ∈ D, t ∈ Td, ω ∈ Ω, k ∈ K (28)
−∆fmax ≤ ∆ftωk ≤ ∆fmax,

∀d ∈ D, t ∈ Td, ω ∈ Ω, k ∈ K (29)

pL,PC
`tωk =

1

X`

(
θPC
O(`)tωk − θ

PC
F (`)tωk

)
,

∀` ∈ L, d ∈ D, t ∈ Td, ω ∈ Ω, k ∈ K (30)∑
g∈Gn

gPC
gtωk +

∑
j∈JC

n

(
sD,PC
jtωk − s

C,PC
jtω

)
−
∑
`∈LO

n

pL,PC
`tωk +

∑
`∈LF

n

pL,PC
`tωk + pUD

ntωk+pUD,PC
ntω = Dntω,

∀n ∈ N, d ∈ D, t ∈ Td, ω ∈ Ω, k ∈ K (31)

In this paper we consider the N-1 security criterion. There-
fore, all possible N-1 contingencies on generating and energy
storage units are considered at each time period and for each
scenario. Given NG generating and NJ storage units, ND

characteristic days with 24 hourly intervals and NΩ scenarios
at each day, the total number of contingencies considered,
while optimizing generation and storage expansion decisions,
is (NG+NJ)·ND ·24·NΩ. Considering this, constraints (19)–
(24) model PFR constraints of conventional units. In these
constraints, binary variable zG

gtwk indicates whether a generat-
ing unit reaches its maximum capacity in the post-contingency
state in period t under scenario w in case of contingency k or
not. Thus, if binary variable zG

gtwk = 1, the post-contingency
power output of generating unit g is at its maximum. As
a result, (19) and (23) set gPC

gtwk to Gmax
g for the existing

generating units, while (20) and (24) set gPC
gtwk to gIN

g for the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TPWRS.2017.2735807

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



0885-8950 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2017.2735807, IEEE
Transactions on Power Systems

5

newly built generating units. On the other hand, if zG
gtwk = 0,

i.e., generating unit g produces below its maximum capacity,
(21) and (22) set gPC

gtwk to UPC
gk (ggtw − DG

g ∆ftwk). Since
renewable units do not participate in PFR, constraint (25)
keeps the output of both the existing and the newly installed re-
newable units at their pre-contingency values. Constraint (26)
models PFR of storage assuming that storage can discharge all
available energy when a contingency happens. Constraints (27)
and (28) limit discharging and charging power of storage units.
The post-contingency frequency deviation from the nominal
value is constrained in (29). Constraints (30)-(31) are post-
contingency equivalents of pre-contingency constraints (16)-
(18). Note that (20) is nonlinear due to the product of zG

gtωk

and gIN
g , which can be linearly reformulated as:

gPC
gtωk ≥ UPC

gk x
G,I
gtωk,

∀g ∈ GC,C, d ∈ D, t ∈ Td, ω ∈ Ω, k ∈ K (32)

0 ≤ xG,I
gtωk ≤ G

IN
g zG

gtωk,

∀g ∈ GC,C, d ∈ D, t ∈ T, ω ∈ Ω, k ∈ K (33)

gIN
g −GIN

g

(
1− zG

gtωk

)
≤ xG,I

gtωk ≤ g
IN
g ,

∀g ∈ GC,C, d ∈ D, t ∈ Td, ω ∈ Ω, k ∈ K (34)
Given the linearization scheme described in eq. (32)-(34),

the proposed optimization is given by:
Eq. (1)− (19), (21)− (34). (35)

Problem (35) is a mixed-integer linear program that can be
solved by off-the-shelf optimization solvers.

C. Traditional Generation and Storage Expansion Problem

The proposed formulation is numerically compared against
a generation and storage expansion problem, based on [16] and
[37], that ignores contingencies. Comparison of the proposed
and traditional formulations will reveal the effects of including
PFR constraints in the planning stage. The traditional genera-
tion and storage expansion formulation is given as follows:

MinimizeΘ

a
[ ∑
j∈JC

(
CSE,IN

j sE,IN
j + CSP,IN

j sP,IN
j

)
+

∑
g∈{GC,C∪GC,I}

CG,IN
g gIN

g

]
+ (36)

∑
ω∈Ω

πω
∑
d∈D

Wd

∑
t∈Td

[∑
g∈G

CG
g ggtω+

∑
n∈N

(
CUDpUD

ntω

)]
Subject to:
Constraints (2)− (18). (37)

III. CASE STUDY

The problem in (35) is tested on an 8-zone model of the
ISO New England system [39] illustrated in Fig. 1, where
each zone is modeled as a single bus. Annual wind generation
profiles with an hourly resolution are taken from [40] for the
30% wind penetration level in terms of annual electricity pro-
duced. The target year is represented by a set of characteristic
days divided into hourly periods. The characteristic days and
weights are selected using the fast-forward scenario reduction

Fig. 1. A diagram of the ISO New England system described in [39].

TABLE I. GENERATING UNITS DATA

Technology
Existing
capacity
(MW)

Candidate
capacity
(MW)

Investment
cost

($/kW)

Forced
outage

rate (%)
Nuclear 2,479.0 2,185.9 3,000 4

Coal 294.2 2,101.3 1,650 6
Oil 404.0 4,902.6 750 3
Gas 0.0 12,084.3 750 3

Wind 4,839.5 0.0 1,500 -

algorithm described in [42]. The objective of this algorithm is
to represent the original set of 365 days with a reduced set of
characteristic days that are close to the days in the original set
in terms of the Kantorovich distance. The algorithm is a greedy
process that selects one day at each iteration, which minimizes
the Kantorovich distance between the reduced and the original
set. The iterations are repeated until a specified number of
days or a certain probability distance is achieved. Finally, the
algorithm computes the weights for the selected characteristic
days. Our numerical experiments with different numbers of
characteristic days suggest that at least five characteristic days
are necessary to ensure numerical stability of the optimal
solution of (35). Therefore, these five characteristic days are
considered in the experiments below. On each characteristic
day, wind power generation is represented using three (av-
erage, high and low) scenarios with probabilities of 0.6, 0.2
and 0.2, as customarily done in other planning studies [13],
[14]. The average scenario is equal to the wind generation
profile provided in [40], whereas the high and low scenarios
are obtained by multiplying the average scenario by 1.25
and 0.75. This three-scenario-based representation makes it
possible to capture spatial and temporal correlations among
wind and wind-demand data, while ensuring computational
tractability [13], [14].

We assume that renewable generation investments are fixed
by policy mandates and optimize investments in a set of
conventional generating technologies and energy storage. Ta-
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ble I provides relevant input data of existing and candidate
generating units. The investment costs and forced outage rates
of generating units included in Table I are obtained from [43]
and [44], respectively. Additionally, the droop is set to 5%
and the maximum allowed frequency deviation is 600 mHz.
Storage candidate locations are not pre-defined and up to
1000 MW of storage power capacity can be placed at each
bus. The maximum charging/discharging duration is set to
γEP = 6 hours, i.e., sE,IN

j = γEPsP,IN
j ,∀j 1. The charging

and discharging efficiencies of storage units are each 0.95 [30].
The initial and minimum state of charge values of the storages
are 0.4 and 0, respectively. The forced outage rate of storage
is set to 2% [44]. We analyze three capital cost scenarios of
energy storage [19]: low ($20/kWh and $500/kW), medium
($40/kWh and $1000/kW) and high ($80/kWh and $2000/kW).
The interest rate and lifetime period are set to 5% and 20 years,
which yields the capital recovery factor of 8.02%.

All simulations are performed with CPLEX 12.6.1 using a
server with ten 2.9 GHz processors and 250 GB of RAM. The
optimality gap is set to 0.05%.

A. Effect of PFR Constraints on Expansion Decisions

This section compares the expansion decisions made by
the models with (Section II-B) and without (Section II-C)
considering the PFR constraints in the planning stage. The
difference between these cases reveal the effect of modeling
PFR in post-contingency states on the optimal investments.
To isolate the effect of the PFR constraints, in this section
PFR is only provided by conventional generating units. Since
the model in Section II-C does not account for contingencies,
we evaluate the expansion decisions made by the model in
Section II-C using the model in Section II-B. To this end, the
model in Section II-B is re-solved with fixed expansion deci-
sions obtained with the model in Section II-C. Table II displays
the investment and operating cost for each case and different
capital cost scenarios of storage, while Figure 2 itemizes the
expansion decisions for each technology considered.

Including PFR constraints in the planning stage reduces the
investment cost. Since storage units do not provide PFR in this
case, the optimization installs other generating units capable of
providing PFR and that have lower capital costs. As a result,
installed capacity of storage units decreases, which leads to
a reduction of the investment cost. Furthermore, generating
units capable of providing PFR, which are installed instead of
storage units, have a lower capital cost than storage units.

The installed storage capacity monotonically increases as
the capital cost of the storage decreases. Under the high
capital cost scenario, energy storage is not installed in either
of the cases. Modelling PFR in the planning stage reduces
the investment cost by 8.5 M$ (0.69%) and the total capacity

1The value of γEP = 6 hours is consistent with technical capabilities of
prospective storage technologies that are expected to provide spatio-temporal
arbitrage [30] and with the needs of systems with high penetration levels
of renewable generation in energy spatio-temporal arbitrage services [45].
This assumption can be revisited by enforcing inequality condition sE,IN

j ≤
γEP · sP,IN

j , ∀j. This modification will not change the problem structure
and solution approach, but will make it possible to optimize the maximum
charging/discharging in the range from 0 to γEP hours.

TABLE II. INVESTMENT AND EXPECTED OPERATING COSTS WITH AND
WITHOUT PRIMARY FREQUENCY RESPONSE (PFR) IN THE PLANNING

STAGE.

Storage
cost Metric Without PFR With PFR

High Investment cost, M $ 1,226.0 1,217.5
Expected operating cost, M $ 1,488.7 1,497.8

Medium Investment cost, M $ 1,231.2 1,224.2
Expected operating cost, M $ 1,475.2 1,484.3

Low Investment cost, M $ 1,204.3 1,208.3
Expected operating cost, M $ 1,469.1 1,477.4

(a) High cost of storage

(b) Medium cost of storage

(c) Low cost of storage
Fig. 2. Expansion decisions with (red) and without (blue) PFR in the
planning stage.

of new generating units by 49.9 MW (0.39%). However, this
modest change in the total investment cost and capacity leads
to a qualitative shift in expansion decisions. Thus, considering
PFR reduces the installed capacity of nuclear, coal, and gas
units by 62.3 MW (3.82%), 96.5 MW (7.1%), and 54 MW
(0.56%), respectively, while the installed capacity of oil units
is increased by 162.9 MW (13.0%). This difference can be
explained by a relatively low capital cost and outage rate of
oil units, as shown in Table I. However, these units have
a relatively high operating cost results in an increase of
the expected operating cost by 9.1 M$ (0.61%) if the PFR
constraints are modelled in the planning stage.

As the capital cost of energy storage reduces, these units
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are installed in addition to the conventional generating units
and perform spatio-temporal energy arbitrage only. The lower
the capital cost, the more energy storage that replaces the
capacity of conventional units is installed. Considering the
PFR constraints in the planning stage reduces the total power
and energy capacity of energy storage installed under both
the medium and low capital cost scenarios. Notably, under
the low capital cost scenario, modeling of the PFR constraints
in the planning stage increases the total investment cost by
4.0 M$ (0.33%), which contrasts with a reduction of the total
investment cost in case of the high and medium capital costs
of storage. Also, energy storage deployment under the low
capital cost reduces expansion decisions on flexible oil and
gas generating units by 158.7 MW (16.1%) and 258.2 MW
(2.9%), respectively, while planning decisions on inflexible
nuclear and coal generating units remain unchanged.

Table III presents the in-sample comparison of the planning
decisions described in Table II and Fig. 2. This comparison
runs day-ahead unit commitment simulations with random-
ized contingencies and wind power outputs to the system
performance during the course of the target year. To avoid
miscalculating the percentage of contingencies with unserved
demand, contingencies at a) non-installed units, b) off-line
generating units, and c) standby (not charging/discharging)
storage units are not accounted for in this table. Since less
generating and storage units are installed when the PFR
constraints are considered, the total number of possible contin-
gencies is reduced by 263 (3.4%), 482 (5.9%), and 6 (0.71%)
for the high, medium, and low storage capital cost scenarios,
respectively. This reduction leads to a lower occurrence and
expected value of unserved demand for all capital costs. Note
that even a modest reduction by 6 (0.71%) contingencies,
which is observed when the PFR constraints are considered in
the planning stage under the low capital cost scenario, reduces
the expected unserved demand by 1883.7 MWh (53.1%).

As it can be seen from the numerical results above, con-
sidering PFR constraints in the investment model leads to
a relatively moderate change in the investment and expected
operating cost (Table II), but sizably affects expansion deci-
sions (Fig. 2) and post-contingency performance of the system
(Table III).

Table IV includes the pre- and post-contingency costs with
and without PFR in the planning stage. In this table pre-
contingency cost refers to the sum of the investment and
operating costs presented in Table 2, whereas post-contingency
costs are the expected unserved demand costs. Thus, the pre-
contingency costs are smaller in all cases in which PFR is not
considered in the planning stage, but at the expense of higher
post-contingency costs. As a result, the total costs are smaller
when PFR are considered in the planning stage.

B. Effect of Storage Providing PFR on Expansion Decisions

This section compares the expansion decisions made with
the PFR constraints considered in the planning stage, as in
Section III-A, when provided by conventional generating units
only and by both conventional generating units and energy
storage. Table V summarizes the investment and operating

TABLE III. IN-SAMPLE COMPARISON OF POST-CONTINGENCY STATES
WITH AND WITHOUT PRIMARY FREQUENCY RESPONSE (PFR) IN THE

PLANNING STAGE.

Storage
cost Metric Without PFR With PFR

High

# of contingencies 7,722 7,459
% of contingencies

with unserved demand 5.335 4.585

Expected unserved
demand, MWh 1,531.7 1,214.5

Med

# of contingencies 8,148 7,666
% of contingencies

with unserved demand 5.167 4.696

Expected unserved
demand, MWh 1,539.9 1,252.4

Low

# of contingencies 8,482 8,476
% of contingencies

with unserved demand 5.423 5.309

Expected unserved
demand, MWh 3,549.4 1,665.7

TABLE IV. PRE- AND POST-CONTINGENCY COSTS WITH AND WITHOUT
PRIMARY FREQUENCY RESPONSE (PFR) IN THE PLANNING STAGE.

Storage
cost Metric Without PFR With PFR

High
Pre-contingency cost, M $ 2,714.7 2,715.3
Post-contingency cost, M $ 15.3 12.1

Total cost, M $ 2,730.0 2,727.5

Medium
Pre-contingency cost, M $ 2,706.4 2,708.5
Post-contingency cost, M $ 15.4 12.5

Total cost, M $ 2,721.8 2,721.0

Low
Pre-contingency cost, M $ 2,673.4 2,685.7
Post-contingency cost, M $ 35.5 16.7

Total cost, M $ 2,708.9 2,702.4

costs and Table VI itemizes the expansion decisions for each
case. Table VII presents the in-sample comparison of the
expansion decisions described in Tables V and VI as described
in Section II-C. Note that ∆ in Tables V–VII denotes the
difference to the respective entries in Tables II–III and Fig. 2
with the FPR constraints.

If the capital cost of energy storage remains high, no
energy storage is installed and, thus, there is no difference in
expansion decisions relative to Section III-A. However, as the
capital cost of storage reduces, the investment cost increases
by 2.5 (0.20%) and 3.5 M$ (0.31%) for the medium and low
capital cost scenarios. These investments increase the expected
operating cost savings of 3.5 M$ (0.24%) and 20.4 M$
(1.38%), respectively. These cost reductions are predominately
achieved by the investments in storage which are increased by
71 MW (41.6%) and 286 MW (34.3%), respectively, while
the total capacity of conventional units is increased by 75.6
MW (0.55%) for the medium cost scenario and is reduced by
13.7 MW (0.10%) for the low cost scenario. The reduction of
the total capacity of conventional units installed under the low
capital cost scenario of storage is caused by lower investments
in the gas generating units.

Considering the ability of energy storage to provide PFR
has a two-fold effect on the in-sample comparison presented
in Table VII. First, the total number of possible contingencies
increases as compared to the case presented in Section III-A.
Second, both the fraction of contingencies that results in
unserved demand and the expected value of unserved demand
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TABLE V. INVESTMENT AND EXPECTED OPERATING COSTS WITH
PRIMARY FREQUENCY RESPONSE (PFR) PROVIDED BY CONVENTIONAL

GENERATING AND STORAGE UNITS IN THE PLANNING STAGE.

Storage
cost Metric Storage

provides PFR ∆

High Investment cost, M $ 1,217.5 0
Expected operating cost, M $ 1,497.8 0

Medium Investment cost, M $ 1,226.7 2.5
Expected operating cost, M $ 1480.8 -3.5

Low Investment cost, M $ 1,212.0 3.7
Expected operating cost, M $ 1,463.8 -20.4

TABLE VI. EXPANSION DECISIONS WITH PRIMARY FREQUENCY
RESPONSE (PFR) PROVIDED BY GENERATORS AND STORAGE IN THE

PLANNING STAGE.

Storage
cost Technology Storage

provides PFR ∆

High

Nuclear, MW 1,565.7 0
Coal, MW 1,260.4 0
Oil, MW 1,416.1 0
Gas, MW 9,566.5 0

Storage, MW 0 0
Storage, MWh 0 0

Medium

Nuclear, MW 1,565.7 0
Coal, MW 1,356.9 0
Oil, MW 1,225.5 27.9
Gas, MW 9,516.3 47.7

Storage, MW 237.7 71.0
Storage, MWh 1426.1 426.1

Low

Nuclear, MW 1,565.7 0
Coal, MW 1,356.9 96.5
Oil, MW 1,006.1 138.5
Gas, MW 8,959.6 -248.7

Storage, MW 1,119.3 286.0
Storage, MWh 6,715.5 1,715.5

TABLE VII. IN-SAMPLE COMPARISON OF POST-CONTINGENCY STATES
WITH PRIMARY FREQUENCY RESPONSE (PFR) PROVIDED BY

GENERATORS AND STORAGE IN THE PLANNING STAGE.

Storage
cost Metric Storage

provides PFR ∆

High

# of contingencies 7,459 0
% of contingencies

with unserved demand 4.585 0

Expected unserved
demand, MWh 1,214.5 0

Med

# of contingencies 7,840 134
% of contingencies

with unserved demand 4.247 -0.449

Expected unserved
demand, MWh 1,163.0 -89.4

Low

# of contingencies 8,778 302
% of contingencies

with unserved demand 2.427 -2.882

Expected unserved
demand, MWh 780.9 -884.8

reduce. Notably, these reductions increase as the storage cap-
ital cost reduces and more capacity storage is installed. This
trend indicates that the ability of energy storage to provide
PFR is crucial for future energy storage procurement when
capital costs are projected to decrease.

C. Impact of the Degradation Characteristic

This section analyzes the effect of the battery degradation
characteristic on the expansion decisions produced by the
model in (35). The cost of battery degradation is computed
using the linear regression model described in [46], which

TABLE VIII. EFFECT OF THE BATTERY DEGRADATION CHARACTERISTIC
ON INVESTMENT AND EXPECTED OPERATING COSTS WITH PRIMARY

FREQUENCY RESPONSE (PFR) PROVIDED BY GENERATORS AND
STORAGE IN THE PLANNING STAGE.

Storage
cost Metric ∆

γDegr = 1
∆

γDegr = 0.8

Medium Investment cost, M 0 0.9
Expected operating cost, M $ 0 1.6

Low Investment cost, M $ 0 0.3
Expected operating cost, M $ 0 1.1

assumes that the capacity degradation is a linear function of
the number of round trip cycles. If NCyc

j is the number of
complete charge/discharge cycles that storage unit j performs
over its lifetime, the expected battery degradation cost on
characteristic day d under scenario ω can be computed as:

cDeg
jdω =

∑
t∈Td

1

NCyc
j

CSE,IN
j

(
sD
jtω+

∑
k∈K

τk(sD,PC
jtωk −s

D
jtω)

)
(38)

Note that since the battery degradation is assumed to be
a function of the round-trip cycle, constraint (38) implicitly
assumes that the energy discharged will be charged back in a
future time period.

To prevent early aging of storage units, the annual degrada-
tion cost should be smaller than the annualized capital cost. In
other words, if the battery degradation cost is greater than its
capital cost, the battery lifetime will be reduced. Therefore, the
annual degradation cost for each storage unit j can be limited
as follows:∑

d∈D

Wdc
Deg
jdω ≤ γ

Degr
(
aCSE,IN

j

)
, ∀j ∈ J, ω ∈ Ω (39)

where γDegr is a parameter used to control the maximum
allowed battery degradation.

Tables VIII and IX summarize the investment and operating
costs and the expansion decisions for different values of
parameter γDegr and capital costs of storage when PFR is
provided by generating and storage units in the planning stage.
Note that ∆ in these tables denotes the difference to the result
reported in Tables VI and VII, where no battery degradation
is considered. Since no energy storage is installed under the
high capital cost scenario, this case is not considered in this
section. In these simulations, a typical value of NCyc

j = 4500
cycles has been considered.

If γDegr = 1, the optimal expansion decisions are identical
to the case in which storage degradation was not modeled. This
means that, under a linear capacity degradation assumption,
the resulting usage of the storage units when degradation was
not considered will not reduce their lifetime. However, if the
usage of the storage units is further limited (γDegr = 0.8)
the expansion decisions change accordingly. This results in an
increase in the investment and expected operating costs (see
Table VIII). Note considering degradation effects strengthens
the dependency of storage investments on the storage capital
cost scenario. Thus, if the storage capital cost is low, the
reduction of the usage of the storage units enforced by (39)
is compensated by increasing the investments in storage.
However, if the storage capital cost is medium, the investments
in storage are reduced.
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TABLE IX. INFLUENCE OF DEGRADATION CHARACTERISTICS ON
EXPANSION DECISIONS WITH PRIMARY FREQUENCY RESPONSE (PFR)
PROVIDED BY GENERATORS AND STORAGE IN THE PLANNING STAGE.

Storage
cost Technology ∆

γDegr = 1
∆

γDegr = 0.8

Medium

Nuclear, MW 0 0
Coal, MW 0 0
Oil, MW 0 5.54
Gas, MW 0 11.2

Storage, MW 0 -19.1
Storage, MWh 0 -114.3

Low

Nuclear, MW 0 0
Coal, MW 0 0
Oil, MW 0 1.8
Gas, MW 0 -8.0

Storage, MW 0 14.6
Storage, MWh 0 87.9

D. Sensitivity to the Cost of Unserved Demand

This section analyzes the impact of the cost of unserved
demand (CUD) on the expansion decisions obtained in Sec-
tion III-B. The investment and operating costs are sensitive to
the cost of unserved demand, as shown in Table X. If param-
eter CUD changes from 10,000 $/MWh to 100,000 $/MWh,
the investment cost gradually increases, while the operating
cost saturates. The increase in the investment cost occurs due
to higher installations of flexible oil and gas generators and
energy storage, as displayed in Table XI. The installed capacity
of nuclear and coal generators remains unaffected if the cost
of unserved demand changes. The investments in flexible
generating and energy storage units avoid the contingencies
that lead to unserved demand and its expected value. The
reductions are achieved while a number of contingencies
increases for higher values of CUD due to a greater number
of generators installed.

E. Effect of Gas-Only Generation Expansion

The availability and relatively low prices of natural gas
has led to its increased use for electricity generation, while
investments in coal and nuclear generating units have been
kept at minimum [41]. In this subsection we study how the
expansion decisions with storage providing PFR reported in
Section III-B change if gas-fired generating units is the only
conventional generation technology available. Table XIII and
XIV summarize the investment and operating costs and itemize
the expansion decisions for each case, where parameter ∆
denotes the difference with respect to the results in Tables VI
and VII.

In case of gas-only generation expansion, the total invest-
ment cost reduces as compared to the case when investments in
other generation technologies are available. These reductions
monotonically increase as the capital cost of energy storage
decreases. As a result of lower investment costs, the expected

TABLE X. SENSITIVITY OF THE INVESTMENT AND EXPECTED
OPERATING COSTS TO THE COST OF UNSERVED DEMAND (CUD ) WITH
PRIMARY FREQUENCY RESPONSE (PFR) PROVIDED BY GENERATORS

AND STORAGE IN THE PLANNING STAGE.

Storage
cost Metric CUD, ·103 $/MWh

10 50 100

Low Investment cost, M $ 1,212.0 1,227.9 1,234.9
Expected operating cost, M $ 1,463.8 1,460.4 1,460.2

TABLE XI. SENSITIVITY OF THE INVESTMENT AND EXPECTED
OPERATING COSTS TO THE COST OF UNSERVED DEMAND (CUD ) WITH
PRIMARY FREQUENCY RESPONSE (PFR) PROVIDED BY GENERATORS

AND STORAGE IN THE PLANNING STAGE.

Storage
cost Technology CUD, ·103 $/MWh

10 50 100

Low

Nuclear, MW 1,565.7 1,565.7 1,565.7
Coal, MW 1,356.9 1,356.9 1,356.9
Oil, MW 1,006.1 1,039.5 1107.7
Gas, MW 8,959.6 9,013.2 9,062.3

Storage, MW 1,119.2 1,333.3 1,333.3
Storage, MWh 6,715.5 8,000.0 8,000.0

TABLE XII. SENSITIVITY OF THE IN-SAMPLE COMPARISON OF
POST-CONTINGENCY STATES TO THE COST OF UNSERVED DEMAND
(CUD ) WITH PRIMARY FREQUENCY RESPONSE (PFR) PROVIDED BY

GENERATORS AND STORAGE IN THE PLANNING STAGE.

Storage
cost Metric CUD, ·103 $/MWh

10 50 100

Low

# of contingencies 8,778 8,845 8,873
% of contingencies

with unserved demand 2.427 0.893 0.462

Expected unserved
demand, MWh 780.8 205.8 105.4

operating costs increase for higher storage capital costs. It is
noteworthy that, similarly to the results in Table VI, energy
storage is not installed under the high capital cost of storage
in case of gas-only generation expansion. Since gas gener-
ating units are flexible resources, the in-sample comparison
presented in Table XV demonstrates that the frequency of the
unserved demand occurrences and its expected values reduce
for all storage capital cost scenarios.

TABLE XIII. INVESTMENT AND EXPECTED OPERATING COSTS WITH
PRIMARY FREQUENCY RESPONSE (PFR) PROVIDED BY GAS-ONLY

GENERATORS AND STORAGE IN THE PLANNING STAGE.

Storage
cost Metric Storage

provides PFR ∆

High Investment cost, M $ 1,025.3 -192.2
Expected operating cost, M $ 1,972.6 474.8

Medium Investment cost, M $ 1,031.8 -194.9
Expected operating cost, M $ 1,964.9 484.1

Low Investment cost, M $ 1,011.9 -200.1
Expected operating cost, M $ 1,962.7 464.9

TABLE XIV. INVESTMENT AND EXPECTED OPERATING COSTS WITH
PRIMARY FREQUENCY RESPONSE (PFR) PROVIDED BY GENERATORS

AND STORAGE IN THE PLANNING STAGE.

Storage
cost Technology Storage

provides PFR ∆

High
Gas, MW 17,035.8 7,469.3

Storage, MW 0 0
Storage, MWh 0 0

Medium
Gas, MW 16,869.1 7,352.8

Storage, MW 166.7 -71.0
Storage, MWh 1,000. -426.1

Low
Gas, MW 15869.8 6910.2

Storage, MW 1,166.2 280.7
Storage, MWh 6,996.2 46.7

F. Computational Performance
Table XVI presents computing times required to solve each

case reported in Sections III-A and III-B with 5 characteristic
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TABLE XV. IN-SAMPLE COMPARISON OF POST-CONTINGENCY STATES
WITHPRIMARY FREQUENCY RESPONSE (PFR) PROVIDED BY GAS-ONLY

GENERATORS AND STORAGE IN THE PLANNING STAGE.

Storage
cost Metric Storage

provides PFR ∆

High

# of contingencies 7,109 -350
% of contingencies

with unserved demand 3.882 -0.703

Expected unserved
demand, MWh 933.4 -281.1

Med

# of contingencies 7,337 -503
% of contingencies

with unserved demand 3.789 -0.458

Expected unserved
demand, MWh 914.0 -249.0

Low

# of contingencies 7,649 -1129
% of contingencies

with unserved demand 3.831 -1.404

Expected unserved
demand, MWh 897.9 -117.0

days and 3 renewable generation scenarios for each day.
As shown in Table XVI, the effect of considering the PFR
constraints in the planning stage increases computing times
(roughly, by two orders of magnitude). The inclusion of the
PFR provided by energy storage in the planning stage intro-
duces additional constraints and variables to the problem and,
thus, also increases computing times. However, the maximum
computing time per instance (72.9 hours) remains acceptable
for planning models. In general, computational performance
of the proposed planning model is sensitive to the number of
characteristic days. However, our experiments indicate that 5
characteristic days ensure numerical stability of the optimal
expansion decisions.

TABLE XVI. COMPUTING TIMES (HOURS)

Storage cost Section III-A Section III-B
Without PFR With PFR Storage provides PFR

High 0.5 39.4 66.1
Med 0.6 34.0 72.9
Low 0.6 33.6 71.2

IV. CONCLUSION

This paper presents a coordinated generation and storage
expansion formulation that explicitly accounts for the PFR
constraints in the planning stage. The model is analyzed on a
ISO New England test system and compared to the traditional
benchmark. The case study considers different energy storage
capital costs scenarios and availability of conventional gener-
ating units. Based on the numerical results presented in the
case study, the following conclusions can be made:

• Considering PFR constraints at the planning stage
changes expansion decisions on conventional generating
and energy storage units;

• It also reduces the frequency and expected value of the
unserved demand;

• The value of energy storage to the system can be in-
creased if it is scheduled to provide PFR services in
addition to performing spatio-temporal energy arbitrage.
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